2 resultados para Oligosaccharide

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glycosylation of the Ab molecule is essential for maintaining the functional structure of Fc region and consequently for Ab-mediated effector functions, such as binding to cells or complement system activation. Alterations in the composition of the sugar moiety can dramatically influence Ab activity; however, it is not completely clear how differences in the N-linked oligosaccharide structure impact the biological function of Abs. We have described that murine IgG1 Abs can be separated according to their ability to elicit in vivo anaphylaxis in a fraction of anaphylactic and other of non-anaphylactic molecules. Furthermore, we showed that the N-linked oligosaccharide chain is essential for the structural conformation of the anaphylactic IgG1, the binding to Fc gamma RIII on mast cells, and, consequently, for the ability to mediate anaphylactic reactions. In this study, we evaluated the contribution of individual sugar residues to this biological function. Differences in the glycan composition were observed when we analyzed oligosaccharide chains from anaphylactic or non-anaphylactic IgG1, mainly the presence of more sialic acid and fucose residues in anaphylactic molecules. Interestingly, the enzymatic removal of terminal sialic acid residues in anaphylactic IgG1 resulted in loss of the ability to trigger mast cell degranulation and in vivo anaphylactic reaction, similarly to the deglycosylated IgG1 Ab. In contrast, fucose removal did not affect the anaphylactic function. Therefore, we demonstrated that the ability of murine IgG1 Abs to mediate anaphylaxis is directly dependent on the amount of sialic acid residues associated to the oligosaccharide chain attached to the Fc region of these molecules. The Journal of Immunology, 2008, 181: 8308-8314.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Capillary electrophoresis with capacitively coupled contactless conductivity detection was successfully used to quantify N-acetylglucosamine and five N-acetyl-chitooligosaccharides (C2-C6) produced after reaction with a purified chitinase (TmChi) from Tenebrio molitor (Coleoptera). No derivatization process was necessary. The separation was developed using 10 mM NaOH with 10% (v/v) acetonitrile as background electrolyte and homemade equipment with a system that avoids the harmful effect of electrolysis. The limit of detection for all oligosaccharides was ca. 3 mu M, and the results indicated that the larger the oligosaccharide, the higher the sensitivity. Analysis of the chitooligosaccharides produced revealed that TmChi has an endolytic cleavage pattern with C5 as the best substrate (higher catalytic efficiency k(cat)/K-M) releasing C2 and C3. (c) 2007 Elsevier Inc. All rights reserved.